ASBC Beer Color and Turbidity

ASBC Color

The ASBC Beer Color scale has a range of approximately 1 to 11 units, with the more yellow, pale worts at the low end of the scale and the redder color of dark worts, beers and caramels at the upper end of the scale.

The industry reference method for ASBC Beer Color and Turbidity Is:

ASBC Beer-10 Color of Beer Part A. Spectrophotometric Color Method available from ASBC – American Society of Brewing Chemists, affiliated with AACC – American Association of Cereal Chemists, St. Paul, MN USA Continue reading

ERIC – Effective Residual Ink Concentration Value

ERIC stands for Effective Residual Ink Concentration and is a control parameter used to quantify the amount of residual ink left in recycled or de-inked pulp (DIP) and paper before and after de-inking and/or bleaching processes. Other parameters measured are brightness and dirt content.

Absorption curve showing residual ink levels at NIR 800 to 1200 nm.

Absorption curve showing residual ink levels at NIR 800 to 1200 nm.

Based on joint research by PAPRICAN (Pulp And Paper Research Institute of Canada) and Technidyne Corporation, it was determined that there was a relationship between the ink and only the ink (not dyes or colorants, paper lignins, pulp yellowing or loss of brightness due to bleaching or process effects) and the reflectance in the 800 – 1200-nm infrared region of the spectrum. This unique correlation makes the ERIC value based on absorption at 950 nm ideal for verification of residual ink concentration for recycled paper.

The ERIC value is affected by the distribution of ink particle size with this metric being most effective for residual ink determination when the ink particles are submicron in size.

ERIC values in ppm = (Ink Absorption Coefficient * Absorption at 950-nm)

where the Ink Absorption Coefficient is based on analytical determination.

ERIC value is a dimensionless ratio of the light absorption coefficient of pulp or paper containing ink to the light absorption coefficient of the ink itself, both being determined at a wavelength of 950 nm. The User will need to calibrate the ERIC value to report in ppom with an added Ink Absorption Coefficient determined by the User.

Research References:

Jordan, B.D. and Popson S.J., 2nd Research Forum on Recycling, St. Adele, Proceedings: 153-169 (1993)

Jordan, B. D. and Popson, S.J. “Measuring the concentration of residual ink in recycled newsprint”, Journal of Paper Science 20 (6):J161-167 (1994)

Trepanier, R.J., Jordan, B., Nguyen, N. and Patschka, H.J. “High-Magnification Image Analysis with Novel Background Reflectance Technique for Measuring Residual Ink in Sheets,” Journal of Pulp and Paper Science, 23 (3): J129 (1997)

Jordan, B. and O’Neill, M. “The Kubelka-Munk Absorption Coefficients of Several Carbon Blacks and Water-Based Printing Inks,” Journal of Pulp and Paper Science, 20 (12): 371 (December 1994)

Carre, B., Galland, G. and Saint Amand, F.J. “Control of Detachment and Removal of Ink by Image Analysis,” Centre Technique de l’Industrie des Papiers (CTP), Grenoble, France, doc. # 1670, (9 March 1994)

Industrial References:

TAPPI Test Method T 567 Determination of Effective Residual Ink Concentration by Infrared Reflectance Measurement

ISO 22754 Pulp and paper — Determination of the effective residual ink concentration (ERIC number) by infrared reflectance measurement

PAPTAC E.8 ERIC value for residual ink concentration

Color and haze measurement of fruit drinks and carbonated beverages

FAQ: “I have worked with a company measuring the color of sports drinks. Now this company is interested in fruit drinks and also in carbonated soft drinks. Have you worked with these types of beverages? Any advice or recommendations?”

Fruit drinks contain:

  • water
  • corn sweeteners
  • may contain some fruit juice or fruit solids
  • flavors (oil emulsions)
  • may have clouding agent which is usually citric acid. Putting in a clouding agent to create a hazy appearance is a marketing decision which depends on the consumer association with the type of drink.

In a fruit drink, whether there is any natural fruit juice or not, the appearance of haze can be created by the presence of oil flavor emulsions and/or clouding agents such as citric acid. These are added on purpose to create a hazy appearance in some flavors of fruit drinks such as pineapple, lemonade, grapefruit and guava where the consumer expects some scattering.

For other fruit drink flavors such as apple, cream soda or grape the consumer does not have the expectation of a hazy appearance and no additional clouding agents are added.HunterLab can measure both lot-to-lot color and haze (or no haze for clear drinks) inherent in different fruit drinks.

If the beverage is carbonated (a separate source of scattering), it should be decarbonated to remove the carbonation as an unnecessary cause of scattering (independent of color) and measurement variation.To de-carbonate the beverage, place the liquid sample in a sonicator (there are a number available but I have seen a Branson Sonicator in successful use in the lab) that breaks up the carbonization by bombarding with Ultrasound for 60 seconds. Some care has to be taken that the carbonated beverage be placed in a container at least twice the volume of the beverage because when the ultrasound pummels the carbonization, the release of carbon dioxide gas can effervesce suddenly.

Another low-tech option to decarbonization is to place an air hose from the normal lab air supply into the beverage and gently run the air for about 4 minutes. The slow stream of air bubbles break up the carbonization gradually.

Carbon Blackness [My], Jetness [Mc], Undertone [dM] and Tint Strength [T]

“Carbon black, also called charcoal black lamp black, pigment black, soot or black carbon, is a fine particle carbon pigment obtained as soot from the incomplete combustion of many different types of organic materials, such as natural gas, or oil. Carbon black is usually a fine, soft, black powder. It is very stable and unaffected by light, acids and alkalis. It is commonly used in printing and lithograph inks and in Chinese ink sticks. In industry, carbon black is used as a filtration material and a filler /pigment in coatings, rubber, plastics, paints, carbon paper, and crayons. Continue reading

Color Measurement of Wine

Wine is a natural product where some color variation is expected and accepted. High color comes from high anthocyanin content and high tannins associated with red wines. Color varies with wine processing practices, particularly fermentation temperature. Co-pigmentation in wine and berry colors, related to presence of anthocyanins, enhances the wine color. Continue reading

Do you have a source for EP Opalescence Standards?

The reference document that defines the visual EP Opalescence scale is:

EP 2.2 Physical and Physico-Chemical Methods for color and opalescence

EP – European Pharmacopoeia, Section 2.2 Physical and Physico-Chemical Methods, Unit European Pharmacopeia, Strasbourg, France (1997: 15-16)

This method describes the visual evaluation of scattering or opalescence in near clear liquids, typically pharmaceutical, relative to distilled water being a perfect clear.

There are two types of physical liquid standards for visual turbidity or opalescence – Formazin solution (with or without stabilizer) and polymer beads (polystyrene micro spheres). The Formazin solution is the historical liquid scattering standard but the polymer beads is considered more stable and homogenous.

Section 2.2.1 Clarity and Degree of Opalescence of Liquids in the EP 4th edition defines a Formazin Primary Opalescent Liquid Suspension (rated at 4000 NTU per EP 5th edition) as a solution of hydrazine sulphate solution and hesamethylenetetramine solution which is stable for 2 months stored in glass.

The EP 4th edition further defines a Formazin Standard of Opalescence (rated at 60 NTU per EP 5th edition) as a dilution of 15.0-ml of the Formazin Primary Opalescent Liquid Suspension (4000 NTU) to 1000.0–ml of water. This suspension must be freshly prepared and stored for no more than 24 hours.

To make the EP Reference suspensions or OP – Opalescence standards, the Formazin Standard of Opalescence (60 NTU) is mixed with distilled water in the following proportions to define 4 levels of liquid EPOP Opalescence Standards. Distilled water is nominally a fifth EPOP standard defining no opalescence or scattering.

Table 2.2.1-1 EPOP Standards 0 I II III IV
 Formazin Standard of Opalescence (60 NTU) 0.0 ml 5.0 ml 10.0 ml 30.0 ml 50.0 ml
Distilled Water (fill to 100.0 ml mark) 100.0 ml 95.0 ml 90.0 ml 70.0 ml 50.0 ml
NTU Rating 0 3 6 18 30

Sources for EPOP Liquid Opalescence standards are:

Hach Company

Loveland, CO 80538 USA


Hach offers the STABLCAL Reference Suspension Set that consists of a range for EP Opalescence Standards per EP is 0 (distilled water >0.1), 3, 6, 18, 30 NTUs. Given the 2-year stability, stabilizers will have been added to these liquid EP standards.

Hach STABLCALC set of EP Opalescence Standards

Hach STABLCALC set of EP Opalescence Standards

Another source for the Formazin Primary Opalescent Liquid Suspension (rated at 4000 NTU) and EPOP Liquid Opalescence standards (rated at 0 – ­30 NTU) is:

RICCA Chemical Company

Arlington, TX 76094 USA


Reporting of EP Opalescence using a HunterLab Sphere Instrument and EasyMatch QC Software

As of EasyMatch QC version 4.82 and higher HunterLab has implemented a correlation method to the EP Opalescence scale based on these standards and is able to report EPOP-10mm (D65/10) for liquid samples measured in a 10 mm path length transmission cell. EPOP values are reported to tenths of a unit, along with NTU values as well.

Is it possible to create ASTM traceable haze standards above 30%?

The current, available ASTM D1003 Haze Standards have nominal Haze% values of 1, 5, 10, 20 and 30 with air (transparent solids) or the transmission cell filled with DI water being 0 (transparent liquids). Here are some thoughts on further options. Continue reading

Can the color of Fresh Spaghetti Sauce be measured with Tomato Scores?

FAQ: “We have another question. Our current Standard for Fresh Spaghetti Sauce is to Run on the TK setting.

It appears as if the Product is Rather orange compared to our Crushed tomato product which is run on the TS setting resulting in a lower color.

What do you believe is the proper setting for Spaghetti Sauce?

The other thing I noticed is That the Calibration record does not have a TK result documented.” Continue reading