Do you have a source for color standards related to fruits and vegetables?

USDA/AMS is the most general source for visual color standards for fruits and vegetables and offers a catalogue of color comparators and equipment they have available.

Continue reading

Do you have references for the equivalency of CIE inverse instrument geometries?

FAQ: “…. the schema of the principle of measuring shows other way of light (source of light -> sample -> sphere -> detector) than our ColorQuest (source of light -> sphere -> sample ->  detector). Please can you explain me difference between both construction? difference between both results of measuring?”

This describes the concept of equivalency of inverse geometries for color measuring instruments in reflectance where the source of light -> sphere -> sample ->  detector in a CIE diffuse d:8 geometry is equivalent to the source of light -> sample -> sphere -> detector of an 8:d geometry. The same concept applies to CIE directional 45:0 and 0:45 geometries.

Directional 45:0 versus 0:45 geometry for color measurement instruments. The directional geometry correlates best to visual evaluation of the sample.

An instrument with directional 45:0 geometry on the left matches the viewing condition of the technician at the window, and is equivalent to the 0:45 geometry on the right matching the technician viewing samples in the light box.

When you look at a sample color, the color you perceive is dependent on the geometry of how you look at it – where source of white light is; where you are standing and where the sample is.

To measure a color as you perceive it, the instrument geometry must match the way you view the sample. A CIE instrument geometry is a formal definition of the relative positions of the light source, sample plane and detector to each other.

There are two main categories with 2 equivalent geometries each – diffuse d:8 (most common) and 8:d and directional 45:0 (most common) and 0:45.

Industrial References for the equivalency of inverse CIE directional geometries

CIE Publication 15.2004 Colorimetry (Section 5)

ASTM E179 Guide for Selection of Geometric Conditions for Measurement of Reflection and Transmission Properties of Materials – Section 8.2

“The Helmholtz Reciprocal Relation – This relation states that the loss of flux density suffered by a bundle of rays due to reflection, refraction, absorption, or scattering by a specimen will not be changed if the direction of travel of the bundle is reversed. In other words, results of intercomparisons of specimens by reflectometers, gloss meters, etc., are not changed if the geometries of incident and viewing beams are interchanged. Because the pupil of the eye is small, visual instruments customarily have small receiver aperture angles. In any instrument with a large received window, rays entering different parts of the window should receive equal weight. Several experimenters have presented evidence tending to refute the Helmholtz Reciprocal Relation, but it is strongly suspected that insufficient attention was given to the foregoing requirements for uniformity of weighting of all light fluxes leaving or entering the instrument apertures involved.”

Note: The inverse geometry equivalency or, Helmholtz Reciprocal Relation, is referenced in section 8.2 of ASTM E179, citing as an original document: Clarke, F. J. J. and Parry, D. J., “Helmholtz Reciprocity: Its Validity and Application to Reflectometry,” Lighting Research and Technology, Vol. 17, 1985, pp 1- 11.

ASTM E1164 Standard Practice for Obtaining Data for Object-Color Evaluation - Section 8.1.1

“For the normal:45° condition, the requirements for illumination and viewing are interchanged from those just described.”

AATCC Evaluation Procedure 6 – Instrumental Color Measurement (Section 2.3.7)

“2.3.7 Instruments with 45/0 or (0/45) geometry illuminate the specimen at the first angle and view the specimen at the second. These two geometries can be either circumferential (viewing or illuminating at 45 to the specimen in a complete circle) or directional. For most textile samples, either 45/0 or 0/45 yield equivalent results.”

 The Helmholtz Reciprocal Relation basically states that if you swap the positions of the light source and detector, everything else being equal, the measured values will be the same.  That is, for reflectance measurements, a bidirectional 45:0 instrument geometry is equivalent to a 0:45; and a d:8 sphere is equivalent to a 8:d.

As usual in color science, there are caveats to the Helmholtz Reciprocal Relation:

  • The condition of “everything else being equal” between two inverse geometry instruments seldom exists.  Usually some element in the optical path (area of view, sphere diameter, light collection angles etc.) is different which can result in a small bias in measurement results.
  • Although it works well in most situations, in strict application, the inverse concept only applies to flat, uniform, non-fluorescent, opaque, solid samples. It will not work for fluorescent or translucent samples, or those that experience light trapping such as plastic pellets.

Can you explain the LabScan XE 0:45 inverted geometry?

FAQ: “Straight from the LSXE Pro-forma, the LabScan XE sample ports are described as:

Port Insert, 3-mm illuminated area; 5-mm measured area
Port Insert, 6-mm illuminated area; 10-mm measured area
Port Insert, 13-mm illuminated area; 17-mm measured area
Port Insert, 25-mm illuminated area; 30-mm measured area
Port Insert, 44-mm illuminated area; 50-mm measured area

I always thought that the measured area was smaller than the illuminated area. Have the illuminated/measured area in the Pro-forma been transposed? Seems like it!”

Continue reading

How can I use EasyMatch QC to measure Contrast Ratio Opacity?

Contrast Ratio Opacity measurement quantifies how opaque a sheet sample using two readings. One reading is taken with the black glass or light trap backing the sample at the port. The second reading is taken with the sample backed by a white tile or the white sample clamp insert. EasyMatch QC will prompt you for the proper backing when taking opacity measurements.

Continue reading

Do you have a source for Magnesium Carbonate powder as top-of-scale?

For measuring the brightness of some materials, some dated industrial methods cite a Magnesium Carbonate block standard to be set to Y = 100% in reflectance. This is a very old top-of-scale standard and HunterLab does not recommend using it.

Continue reading

How do HunterLab sphere instruments conform to ASTM D1003 Section 8: Procedure B Spectrophotometer for transmission haze measurement?

HunterLab sphere instruments with CIE d/8 geometries conform to the requirements of ASTM D1003 Section 8: Procedure B Spectrophotometer. The measurement of transmission haze using Procedure B instruments will be in close agreement with ASTM D1003 Procedure A Haze meter.

Here is a more detailed description of how the HunterLab UltraScan PRO, UltraScan VIS and ColorQuest XE meet the requirements of Section 8.

Continue reading

Sources for BRDF and BSDF Equipment and Testing Services

In industrial colorimetry of QA non-luminous materials, assumptions are made that light reflected from or transmitted through a surface is relatively uniform, with only diffuse and specular components. To promote inter-instrument agreement, the CIE geometries for collecting the reflected or transmitted signal of non-luminous materials are standardized into directional and diffuse sphere types.

Prismatic highway signage materials tend to reflect light more in a retro-reflective direction than any other. This is the type of material where a BRDF scattering profile would be useful to know in the research stage.

Prismatic highway signage materials tend to reflect light more in a retro-reflective direction than in any other. This is the type of material where a BRDF scattering profile would be useful to know in the research stage.

BRDF measurement serves as more of a research tool when you want to precisely quantify the pattern of light reflecting from a sample surface, or the pattern of light being transmitted through a clear material. Typical materials would be coated surfaces, plastics, films and metals.

Another major application area for BRDF measurement is quantifying the illumination pattern from self luminous light sources such as LEDs and HID lamps; and luminaires such as automotive displays, and architectural lighting.

HunterLab does not make BSDF equipment but here are some further resources for equipment and measurement services:

Lighting Sciences Inc.
Scottsdale, AZ  85260 USA
+480.991-9260
www.lightingsciences.com
LabSphere, Inc.
North Sutton, NH 03260 USA
+603-927-4266
www.labsphere.com

Radiant Zemax

Redmond, WA 98053 USA

+425-844-0152

www.radiantzemax.com